mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes.
نویسندگان
چکیده
MicroRNAs (miRNAs) silence the expression of target genes post-transcriptionally. Their function is mediated by the Argonaute proteins (AGOs), which colocalize to P-bodies with mRNA degradation enzymes. Mammalian P-bodies are also marked by the GW182 protein, which interacts with the AGOs and is required for miRNA function. We show that depletion of GW182 leads to changes in mRNA expression profiles strikingly similar to those observed in cells depleted of the essential Drosophila miRNA effector AGO1, indicating that GW182 functions in the miRNA pathway. When GW182 is bound to a reporter transcript, it silences its expression, bypassing the requirement for AGO1. Silencing by GW182 is effected by changes in protein expression and mRNA stability. Similarly, miRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay, and both mechanisms require GW182. mRNA degradation, but not translational repression, by GW182 or miRNAs is inhibited in cells depleted of CAF1, NOT1, or the decapping DCP1:DCP2 complex. We further show that the N-terminal GW repeats of GW182 interact with the PIWI domain of AGO1. Our findings indicate that GW182 links the miRNA pathway to mRNA degradation by interacting with AGO1 and promoting decay of at least a subset of miRNA targets.
منابع مشابه
miRISC and the CCR4–NOT complex silence mRNA targets independently of 43S ribosomal scanning
miRNAs associate with Argonaute (AGO) proteins to silence the expression of mRNA targets by inhibiting translation and promoting deadenylation, decapping, and mRNA degradation. A current model for silencing suggests that AGOs mediate these effects through the sequential recruitment of GW182 proteins, the CCR4-NOT deadenylase complex and the translational repressor and decapping activator DDX6. ...
متن کاملDCP1 forms asymmetric trimers to assemble into active mRNA decapping complexes in metazoa.
DCP1 stimulates the decapping enzyme DCP2, which removes the mRNA 5' cap structure committing mRNAs to degradation. In multicellular eukaryotes, DCP1-DCP2 interaction is stabilized by additional proteins, including EDC4. However, most information on DCP2 activation stems from studies in S. cerevisiae, which lacks EDC4. Furthermore, DCP1 orthologs from multicellular eukaryotes have a C-terminal ...
متن کاملThe interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets
Animal miRNAs silence the expression of mRNA targets through translational repression, deadenylation and subsequent mRNA degradation. Silencing requires association of miRNAs with an Argonaute protein and a GW182 family protein. In turn, GW182 proteins interact with poly(A)-binding protein (PABP) and the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These interactions are required for the deade...
متن کاملThe DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif.
The major pathway of mRNA degradation in yeast occurs through deadenylation, decapping and subsequent 5' to 3' exonucleolytic decay of the transcript body. To identify proteins that control the activity of the decapping enzyme, which is encoded by the DCP1 gene, we isolated a high-copy suppressor of the temperature-sensitive dcp1-2 allele, termed DCP2. Overexpression of Dcp2p partially suppress...
متن کاملArabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development.
mRNA turnover in eukaryotes involves the removal of m7GDP from the 5' end. This decapping reaction is mediated by a protein complex well characterized in yeast and human but not in plants. The function of the decapping complex in the development of multicellular organisms is also poorly understood. Here, we show that Arabidopsis thaliana DCP2 can generate from capped mRNAs, m7GDP, and 5'-phosph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 20 14 شماره
صفحات -
تاریخ انتشار 2006